Vanishing Viscosity Limit for an Expanding Domain in Space
نویسندگان
چکیده
We study the limiting behavior of viscous incompressible flows when the fluid domain is allowed to expand as the viscosity vanishes. We describe precise conditions under which the limiting flow satisfies the full space Euler equations. The argument is based on truncation and on energy estimates, following the structure of the proof of Kato’s criterion for the vanishing viscosity limit. This work complements previous work by the authors, see [5, 8]. Résumé. Nous étudions le comportement à la limite des écoulements incompressibles visqueux en admettant que l’évanouissement de la viscosité est accompagné d’une expansion du domaine fluide. Nous décrivons des conditions précises sous lesquelles l’écoulement limite satisfait les équations d’Euler spatiales complètes. L’argument est fondé sur la troncature et sur des estimations d’énergie, suivant une stratégie pareille à la preuve du critère de Kato pour la limite de viscosité tendant à zéro. Ce résultat complémente les travaux précédents des auteurs [5,6]. Recompiled on January 12, 2011 to add active links Detail level is 1: as for submission but with margin comments
منابع مشابه
Vanishing Viscosity and the Accumulation of Vorticity on the Boundary
We say that the vanishing viscosity limit holds in the classical sense if the velocity for a solution to the Navier-Stokes equations converges in the energy norm uniformly in time to the velocity for a solution to the Euler equations. We prove, for a bounded domain in dimension 2 or higher, that the vanishing viscosity limit holds in the classical sense if and only if a vortex sheet forms on th...
متن کاملA Finite Time Result for Vanishing Viscosity with Nondecaying Velocity and Vorticity
∂tv + v · ∇v = −∇p div v = 0 v|t=0 = v. In this paper, we study the vanishing viscosity limit. The question of vanishing viscosity addresses whether or not a solution vν of (NS) converges in some norm to a solution v of (E) with the same initial data as viscosity tends to 0. This area of research is active both for solutions in a bounded domain and for weak solutions in the plane. We focus ou...
متن کاملThe Vanishing Viscosity Limit in the Presence of a Porous Medium
We consider the flow of a viscous, incompressible, Newtonian fluid in a perforated domain in the plane. The domain is the exterior of a regular lattice of rigid particles. We study the simultaneous limit of vanishing particle size and distance, and of vanishing viscosity. Under suitable conditions on the particle size, particle distance, and viscosity, we prove that solutions of the Navier-Stok...
متن کاملOn the vanishing-viscosity limit in parabolic systems with rate-independent dissipation terms
We consider semilinear and quasilinear parabolic systems with a nonsmooth rate-independent and a viscous dissipation term in the limit of very slow loading rates, or equivalently with fixed loading and vanishing viscosity " > 0. Because for nonconvex energies the solutions will develop jumps, we consider the vanishing-viscosity limit for the graphs of the solutions in the extended state space i...
متن کاملInviscid limits for the Navier-Stokes equations with Navier friction boundary conditions
We consider the Navier-Stokes equations with Navier friction boundary conditions and prove two results. First, in the case of a bounded domain we prove that weak Leray solutions converge (locally in time in dimension ≥ 3 and globally in time in dimension 2) as the viscosity goes to 0 to a strong solution of the Euler equations provided that the initial data converges in L2 to a sufficiently smo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008